RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

B.A./B.SC. MID SEMESTER EXAMINATION, SEPTEMBER 2012 FIRST YEAR

Date : 10/09/2012

MATHEMATICS (Honours)

Time : 11 am - 1 pm

Paper: I

Full Marks: 50

[Use separate answer-books for each group]

Group-A

 Answer any three questions: 3x4 State and prove the fundamental theorem on equivalence relations. 4 Let S be a non-empty finite set. Prove that a mapping $f: S \to S$ is injective if and 4 only if it is surjective. Let S be a finite set with n elements. Find the number of symmetric relations on S. 4 c) Describe the smallest equivalence relation on \mathbb{R} containing the line x-y=1 in (x, y)4 Check whether the following statements are true for $A, B, C \subseteq U$, U being the universal set: 4 (i) If $A \cup B = A \cup C$, then B = C(ii) If $A \cap B^c = A \cap C^c$, then B = C(iii) If $A\Delta B = A\Delta C$, then B = C(iv) IF $A \times B = A \times C$, then B = C. (Justify your claim in each case) 2x3Answer any two questions: State the principle of mathematical induction and use it to prove that $(n+1)! > 2^n$ for 1+2State the lub axiom for subsets of \mathbb{R} . Prove that $\{A: A \subseteq \mathbb{R} \text{ and Sup } A = 0\}$ is an 1+2Let X = [0,1], $Y = [\sqrt{2}, \sqrt{3}] \cap Q$ and T be the set of all functions from X to Y i.e. $T = \{f: f \text{ is a function from } X \text{ to } Y\}.$ Find sup A and inf A where $A = \{ f(x) : f \in T, x \in X \}$. Answer **any one** question out of 3 and 4: 1x7 Prove that every convergent sequence in \mathbb{R} is bounded. Is the converse true? Justify. 21/2+11/2 Prove that the sequence $\{u_n\}_{n \in \mathbb{N}}$ defined by $0 < u_1 < u_2$ and $u_{n+2} = \frac{2u_{n+1} + u_n}{3}$ for $n \ge 1$, converges to $\frac{u_1 + 3u_2}{4}$. 3 Prove that a monotone increasing sequence in \mathbb{R} , which is bounded above, converges 3 to its supremum. Prove that the seaquence $\{u_n\}_{n\in\mathbb{N}}$ defined by $u_1=\sqrt{6}$ and $u_{n+1}=\sqrt{6+u_n}$ for $n\geq 1$, 4 converges to 3.

Group-B

5. Answer any three questions: a) Show that the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my = 1 is right angled if $(a+b)(al^2 + 2hlm + bmh^2) = 0$.

3x4

4

4

4

1x13

4

5

5

- b) Show that the equation of the line joining the feet of the perpendiculars from the point (d,0) on the lines $ax^2 + 2hxy + by^2 = 0$ is (a-b)x + 2hy + bd = 0.
- c) If the tangents at P, Q of a parabola meet at a point T and S be the focus, then prove that $ST^2 = SP.SQ$.
- d) Show that the equation of the tangent to the conic $\frac{1}{r} = 1 + e \cos \theta$ parallel to the tangent at $\theta = \alpha$ is given by $I(e^2 + 2e \cos \alpha + 1) = r(e^2 1)[\cos(\theta \alpha) + e \cos \theta]$.
- e) Reduce the equation $x^2 4xy + 4y^2 + 2x 4y + c = 0$ to its canonical form and find its nature for different values of c.
- 6. Answer any one question: $\frac{dy}{dx} + Py = Oy^{p} \text{ in which } P \text{ and } O \text{ are functions of } x \text{ along the properties }$
 - a) Solve the equation $\frac{dy}{dx} + Py = Qy^n$ in which P and Q are functions of x alone or constants.
 - b) Find an integrating factor of the equation $(y^2 + 2x^2y)dx + (2x^3 xy)dy = 0$ and hence solve it.
 - c) If $\frac{dr}{d\theta} + 2r \tan \theta = \sin \theta$ and r = 0 when $\theta = \frac{\pi}{3}$, find the maximum value of r.
- 7. a) Prove that the necessary and sufficient condition that Mdx + Ndy = 0 be exact is $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}.$
 - b) Solve: $(x^3 + xy^4) dx + 2y^3 dy = 0$.
 - c) Find the differential equation of $\frac{x^2}{a^2 + \lambda} + \frac{y^2}{b^2 + \lambda} = 1$, where λ is the only parameter.